Capacity Results for Arbitrarily Varying Wiretap Channels

نویسندگان

  • Igor Bjelakovic
  • Holger Boche
  • Jochen Sommerfeld
چکیده

In this work the arbitrarily varying wiretap channel AVWC is studied. We derive a lower bound on the random code secrecy capacity for the average error criterion and the strong secrecy criterion in the case of a best channel to the eavesdropper by using Ahlswede’s robustification technique for ordinary AVCs. We show that in the case of a non-symmetrisable channel to the legitimate receiver the deterministic code secrecy capacity equals the random code secrecy capacity, a result similar to Ahlswede’s dichotomy result for ordinary AVCs. Using this we can derive that the lower bound is also valid for the deterministic code capacity of the AVWC. The proof of the dichotomy result is based on the elimination technique introduced by Ahlswede for ordinary AVCs. We further prove upper bounds on the deterministic code secrecy capacity in the general case, which results in a multi-letter expression for the secrecy capacity in the case of a best channel to the eavesdropper. Using techniques of Ahlswede, developed to guarantee the validity of a reliability criterion, the main contribution of this work is to integrate the strong secrecy criterion into these techniques.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Classical-quantum arbitrarily varying wiretap channel: Ahlswede dichotomy, positivity, resources, super-activation

We establish the Ahlswede dichotomy for arbitrarily varying classicalquantum wiretap channels, i.e., either the deterministic secrecy capacity of the channel is zero, or it equals its randomness-assisted secrecy capacity. We analyze the secrecy capacity of these channels when the sender and the receiver use various resources. It turns out that randomness, common randomness, and correlation as r...

متن کامل

Capacity results for classes of wiretap channels

We consider two communication systems which are time-discrete and memoryless, both depend on a state, in terms of information-theoretic secure data transmission. The compound channel consists of a finite or infinite set of channels which is known to both the sender and the receiver, but unfortunately it is not known which channel is in use for any codeword transmission. In contrast the state of...

متن کامل

Classical-Quantum Arbitrarily Varying Wiretap Channel

The arbitrarily varying channel models transmission over a channel with an state that can change over time. We may interpret it as a channel with an evil jammer. The arbitrarily varying channel was first introduced by Blackwell, Breiman, and Thomasian in [8]. The wiretap channel models communication with security. It was first introduced by Wyner in [12]. We may interpret it as a channel with a...

متن کامل

Secure Communications over Arbitrarily Varying

by Ebrahim MolavianJazi In this thesis, we consider a class of information protection problems requiring confidentiality (secrecy) from eavesdropping and integrity (reliability) from jamming in an information-theoretic context. For this purpose, we introduce the arbitrarily varying wire-tap channel (AVWTC) model consisting of a family of wiretap channels indexed by some state that is selected b...

متن کامل

MIMO Wiretap Channels with Arbitrarily Varying Eavesdropper Channel States

In this work, a class of information theoretic secrecy problems is addressed where the eavesdropper channel states are completely unknown to the legitimate parties. In particular, MIMO wiretap channel models are considered where the channel of the eavesdropper is arbitrarily varying over time. Assuming that the number of antennas of the eavesdropper is limited, the secrecy rate of the MIMO wire...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013